Numpy Min Max



  1. Python Numpy Max Min
  2. Numpy Min Max Value
  3. Numpy Min Max Average
  4. Numpy Minimum

Overiew:

この記事では「 【NumPy入門 np.max】最大値を取り出すnp.max,np.nanmax,np.maximum 」といった内容について、誰でも理解できるように解説します。この記事を読めば、あなたの悩みが解決するだけじゃなく、新たな気付きも発見できることでしょう。お悩みの方はぜひご一読ください。. Numpy.amax Python’s numpy module provides a function to get the maximum value from a Numpy array i.e. Numpy.amax(a, axis=None, out=None, keepdims=, initial=).

Max
  • The min() and max() functions of numpy.ndarray returns the minimum and maximum values of an ndarray object.
  • The return value of min() and max() functions is based on the axis specified.
  • If no axis is specified the value returned is based on all the elements of the array.
  • Axis of an ndarray is explained in the section cummulative sum and cummulative product functions of ndarray.

Example-ndarray.min(), ndarray.max():

Np min
  • The example provided calls min() and max() functions on ndarray objects four times each.
  • Once with no axis specified
  • Thrice with axis values specified - the axis values are 0, 1 and 2.

Python Numpy Max Min

  • Since the ndarray object is a 3-dimensional array object it has 3 indexes.
  • The dimension of the ndarray object is given by the tuple (3,3,4).
  • That is the ndarray object has three 2-dimensional arrays of shape (3,4).

Numpy Min Max Value

# Example Python program for finding the min value along the given axis of an ndarray

# Import numpy module

import numpy as np

# Import standard library module random

import random

# Create a 3-Dimensional ndarray object

array_3d = np.array([[[1,1,1,1],

[2,2,2,2],

[3,3,3,3]],

[[4,4,4,4], Vsco film free download mac.

[5,5,5,5],

[6,6,6,6]],

[[7,7,7,7],

[8,8,8,8],

[9,9,9,9]]]

)

# Print the 3-Dimensional Array

print('Input ndarray:')

print(array_3d)

print('Shape of the ndarray:')

print(array_3d.shape)

print('Number of dimensions/axis of the ndarray:')

Atomic

print(array_3d.ndim)

# Print the minimum value of the whole array - without considering the axis parameter

print('Minimum value in the whole array:%d'%(array_3d.min()))

# Print the minimum value for axis = 0

print('Minimum value along the axis 0:')

print(array_3d.min(axis=0))

# Print the minimum value for axis = 1

print('Minimum value along the axis 1:')

print(array_3d.min(axis=1))

# Print the minimum value for axis = 2

print('Minimum value along the axis 2:')

print(array_3d.min(axis=2))

# Print the maximum value of the whole array - without considering the axis parameter

print('Maximum value in the whole array:%d'%(array_3d.max()))

# Print the maximum value for axis = 0

print('Maximum value along the axis 0:')

print(array_3d.max(axis=0))

# Print the maximum value for axis = 1

print('Maximum value along the axis 1:')

print(array_3d.max(axis=1))

# Print the maximum value for axis = 2

print('Maximum value along the axis 2:')

print(array_3d.max(axis=2))

Numpy Min Max Average

Output:

Numpy Minimum

Input ndarray:

[[[1 1 1 1]

[2 2 2 2]

[3 3 3 3]]

[[4 4 4 4]

[5 5 5 5]

[6 6 6 6]]

[[7 7 7 7]

[8 8 8 8]

[9 9 9 9]]]

Shape of the ndarray:

(3, 3, 4)

Number of dimensions/axis of the ndarray:

3

Minimum value in the whole array:1

Minimum value along the axis 0:

[[1 1 1 1]

[2 2 2 2]

[3 3 3 3]]

Minimum value along the axis 1:

[[1 1 1 1]

Download cs go free mac. [4 4 4 4]

[7 7 7 7]]

Minimum value along the axis 2:

[[1 2 3]

[4 5 6]

[7 8 9]]

Maximum value in the whole array:9

Maximum value along the axis 0:

[[7 7 7 7]

[8 8 8 8]

[9 9 9 9]]

Maximum value along the axis 1:

[[3 3 3 3]

[6 6 6 6]

[9 9 9 9]]

Maximum value along the axis 2:

[[1 2 3]

[4 5 6]

[7 8 9]]